Categories
Construction Growing Food Hemp Hemp Research Resources

Self Grown Hemp for Construction

Wouldn’t it be ideal if you could grown your own hemp and then use it to build your home? 1 or 2 hectares of hemp stalk is potentially all you need to harvest enough building materials to build a house. Imagine that – growing your own house!  … but it isn’t a simple thing to do.

The hemp plant has four elements: seeds, leaves, fibers and a wooden core. The part you need for construction is the wooden core – also called the hurd or shiv. Separating it from the other elements of the plant requires effort. You need to grow the hemp, deffoliate it (remove the leaves) before harvesting, harvest or remove the seeds, harvest the stalk, let it ret (start decomposing so that the fibers can be separated from the hurd) and then decorticate it.

This finally step of decortication seems like the greatest obstacle – this is the process of separating the fiber and the wooden core. It can be done either through massive manual labor (of which I don’t yet have all the details – but it involves collecting the harvested stalks into small bales and then beating them to separate the fibers and wooden core) or in an industrial process. The indutrial process is usually designed to extract the fibers, the actual wooden shiv is simply a left over of that process.

It would be so much easier to grow your own construction hemp if decortication could be avoided – and this may be possible but my understanding is that it depends on the climate you live in. This research paper on Hemp-Concretes claims that it is possible to create hempcrete using both shives and fibers – BUT it is important to note that the research focuses on the structural aspects of the resulting hempcrete. It does not address the effect of fibers on insulation and breathability of the hempcrete.

Introduction of fiber to the hempcrete mix can cause humidity problems. When fibers are clumped together they tend to draw moisture and that is not something you want to happen in your wall. According to Steve Allin it is possible to add 5%-15% of fiber to the mix but not much more. This may be less of an issue in a hot and dry climate – but otherwise the risk seems unwarranted.

Maybe when the hemp industry matures it will be possible to cultivate stalks with very little fiber and a massive wooden core – which could then be used in whole? For now though it seems that self-grown hemp is not a feasibly reliable option for construction unless you have the means to decorticate it.

Categories
Construction Hemp

Passivhaus

Introduction

Passivhaus is one of the terms out there in eco-green-sustaintable building land. It may look like its spelled wrong but that’s because its originally from Germany. It represents a very strict and high standard of energy efficiency in a building. It isn’t (yet) an official requirement or standard but it is gathering momentum as an unspoken standard.

There are three complementary core ideas behind the idea of a Passivhaus:

  1. Complete and thorough thermal insulation of the house which prevents conductivity of heat from the inside-out or the outside-in.
  2. Complete air-tightness which prevents exchange of heat through air leaks (windows, doors, pipes, chimneys … every opening needs to be sealed!).
  3. An efficient ventilation system that both exchanges air (from the outside and the otherwise airtight house) and does so without losing heat.

This is one of those images that is better then a thousand words. The apartment building on the left is standard/traditional building while the apartment building on the right is built according to the Passivhaus standard. That’s the bottom line of Passivhaus – keeping the heat from escaping means you need to expend less energy to heat the inside.

Extreme!?

I have come across Passivhaus numerous times in recent weeks and my recurring personal impression is that it is too extreme:

  • It seems like more of an academic indulgence then a practical construction practice.
  • It’s objective and success is measured in a single number – the amount of energy needed to heat a square-meter of space.
  • It demands rigorous builing disciplines which require uncompromised excellence in construction.
  • It demands the use of specialized insulation materials which can be expensive (especially if you consider the ecological foot-print involved in manufacturing them).
  • It creates a house that demands constant attention, maintenance and proper use by its residents (every window opened and every hole drilled in the wall is a potential energy hazard).

All of which results in a delicately balanced system: if it isn’t absolutely sealed, perfectly ventilated by a carefully installed system and properly used it just won’t work. There is no room for error. This maybe OK in a scientific experiment but not so for life, nature and people.

In any case it doesn’t feel right for us: we have a limited budget, average construction capabilities, standard building materials, etc. We are going to do the best that we can with what we have. It’s an 80/20 kind of thing – where 20% of the effort takes you 80% of the way you need to go and it would take another 80% of effort to go the rest of the way. We’re aiming for a good middleground – pushing the limits of what we have – but that, by definition, is not enough to go for 100%. Passivhaus is uncompromising, but we live in a reality which demands compromise.

“A passivehouse is cost-effective when the combined capitalized costs (construction, including design and installed equipment, plus operating costs for 30 years) do not exceed those of an average new home.”

Source: PassiveHouse.com

I am hesitant to relate to this statement as that may give it unwarranted legitimacy –  cost is just too narrow a perspective to view ecological housing. But if I do meet it head on, as is, I would say that it sets its sights much too low. I hope to build a house where the combined capitalized costs are much lower then those of a new average home (whatever that is). I also hope to build a house who’s qualitative effects (both for us and others) far outway it’s economic effects.

Maybe Passivhaus is, for the time being, a high-end building experiment? Maybe in time it will spawn accessible, affordable and feasible techniques, solutions, technologies, practices … that can become a defacto standard that simply makes sense to follow? For now, it is out of touch with us and our needs.

Humidity

Having said all that exploring Passivhaus has brought to my attention a factor I had not taken into consideration in all of my energy research: Indoor Air Quality. I have been following a very basic intuition: “generate heat” in trying to solve a problem we’ve been having for many winters: “being cold”. Most of my attention has been on how to preserve and generate heat (space and water) effectively.

I had not given any thought to one of the central themes of Passivhaus: quality of air. Quality of air (assuming there is good ventilation) is strongly effected by humidity … and humidity effects the overal experience of temperature … cold is much colder when humidity is too low and heat is much hotter when humidity is too high. I have experienced the effects of humidity in warm and cold temperatures in Israel and I have seen it (as accumulated moisture and mildew) in almost all Romanian homes I have visited.

I don’t know yet enough about ventillation and humidity.

Hemp

One of the much praised qualities of hemp masonry is it’s breathability. It seems to have a natural tendency to absorb and expel unneeded moisture. I don’t yet have enough information on the overall effects of hemp on moisture, ventilation or quality of air indoors – but I do have a good feeling about the effects of hemp!

Resources

Following are some of the resources I came across and consumed in trying to understand Passivhaus: