Categories
Electricity Energy

Hydro Electric Barrel

In a country like Romania it is not unheard of to live on a property of land that has running water – so we’ve put that on our wishlist. In such cases hydro-electricity can be a very appealing source of electricity (though I have asked myself what would happen in case of freezing). With that in mind have a look at this interesting invention – the hydro-electric-barrel:

Categories
Electricity Energy

3 Steps to Electricity Independence in Romania

Though living off-the-grid is tempting it probably isn’t as ecological as you may think it is. Electricity is an infrastructure that is best provided through collaborative systems instead of independent ones. It is unfortunate that so much of it is generated with an unnecessarily high ecological price – which is good enough reason to want to do it better on your own.

Being off the grid isn’t necessarily a smart financial choice either (at the present) because a completely independent system is still so expensive that it may never really repay itself (taking into consideration your level of consumption and price of grid electricity). Living off-the-grid is morally better but necessarily financially better.

Step 1: On The Grid

There are enough challenges and expenses when building a new house. Getting off-the-grid doesn’t need to be a top priority. If you are building a home and can connect to the grid then consider starting connected to the grid. You can design your home so that eventually it may be completely off-the-grid but you don’t need to implement it right away. You can designate places for photovoltaic panels, for wires, for batteries, converters, etc. but you don’t have to install them right from the start.

If, like us, you are building your own home then you will need a reliable source of electricity during construction. If you don’t have a grid-connection then you may need to bring a generator on site instead.

Step2: Self Generated

The next step, when you are ready for it is to start generating your own electricity. You should start with the natural resource that is most available to you. In the area of Cluj the leading sources are probably sun and water (if you’ve got running water on your property with enough altitude difference to generate the needed flow). If you are living in the mountains you may also have wind power available to you, yet it seems that commercial wind-powered generators are prohibitively expensive. In addition to the generating source (such as solar panels) you will need converters to convert and regulate your source current into 120v so it is compatible with all of your existing appliances.

It’s comfortable to do this while still connected to the grid because your self-generated electricity is backed- by the grid electricity (though you will need a grid-tie system to connect to the grid). If, for example, you rely on solar power then on cloudy days you still have all the power you need from the grid. If you generate more electricity then you consume then there is a good chance that your electric company will buy it from you. So in the end you may still be benefiting from grid-electricity but your bill will be zero or the electric company may pay you.

An efficient electric generating system and a low consumption home can generate a monthly revenue for you – so you may want to consider staying in this configuration and not going off the grid.

Step3: Off The Grid

To go completely off the grid you need to add to your electrical system a battery array. Batteries store energy when it is generated and make it available when it isn’t. If, for example, you rely on solar power then you will need batteries to supply you with electricity during the night when your solar panels are not providing you with electricity. Good batteries (that will work for 20 years) are initially very expensive to install. You may need additional converters to integrate them into your system and you need to be careful and monitor their use when your sources are not generating electricity  (more on that in a separate post).

When you go off the grid you are completely on your own so regardless of any expenses (and potential losses) involved in doing so, make sure you are ready to be on your own (for example, in our house we are planning heating and hot-water systems that can operate at least basically when there is a power-out).

Categories
Energy

Are Alternative Energy Technologies Relevant?

We are spending a lot of time looking at potential energy solutions – solar, wind, hydro, geothermal … anything and everything. There’s a lot of knowledge to be acquired and there are a lot of companies looking to sell their products and solutions.

The one thing they all have going for them is a promise of a so called better day – super efficient solutions to basic needs, making better use of the environment, lowering carbon foot print and what not. It’s all very appealing … but our overall impression is that most of these technologies are not relevant for us.

Experimental

A lot of these technologies are still experimental – there simply has not not been enough experience with these systems to get a clear picture of what they can do, how well they can do it and for how long. If you factor in mind diversities such as climate, culture, lifestyle, natural resources … then the picture becomes even less clear and conclusive.

If you are considering such systems you are probably better off thinking of them as experiments rather then solutions. Experiments are a process of trial and error that may or may not lead to a workable solution. Make sure you have a capacity for experimentation – because no matter what kind of promises and guarantees you will hear from product manufacturers – there  are more unknowns to their products then they care to admit.

Complexity

A key factor in any solution we consider is both it’s simplicity. The simpler the solution the less likely it is to break down and the easier (and less costly) it is to fix when it does happen to falter.

When the luxury of electric windows started appearing in cars they failed alot which was very bothersome (not  being able to roll-up or down a car window) and terribly expensive to fix. It took somewhere between 10 and 20 years to reach a point where the simple mechanism of an electric window became reliable.

In addition, the last 10 or 20 years of production seem to have suffered a drop in quality. There was a time when a washing machine was engineered to last 20 or 30 years, now most machines falter after 4 or 5 years. New machines are also so complicated to fix that often it is cheaper to throw them away and get new ones instead of fixing them.

This meeting of complexity and experimental doesn’t invoke confidence.

Indulgent

Most of the technologies are prohibitively expensive. We can’t help but feel that they are a fashionable indulgence more then feasible, ecological, responsible solutions to energy challenges.

Our meeting with these technologies (as is the case with most of the other people we know in this context) takes place in the context of moving into a simple and sustainable lifestyle – where do-it-yourself replaces consumerism, where money is a limited resource and where finance is not welcome. The price entry barrier is so ridiculously high that these technologies are simple not relevant.

Availability

Alternative energy home/residential products seem to be widely available in the USA and some developed west-European countries. They are not easy to come by in Romania (and I’m guessing in many other places) where they can be of great value (i.e. a self-sustainable village home).

This is another sign to me that these technologies are still more of a fashion then actual feasible solutions. They are highly available for the rich to play around with (and feel they all green about themselve as they consume copious amounts of energy) rather then where they can be best leveraged.

Production Waste

Looking at a lof of these solutions makes me wonder about how much ecological waste was created when they were produced. This is an often overlooked aspect of ecological solutions – they may run efficiently and saved you a lot of money – but how much of an ecological foorprint did they leave behind them when they were manufactured?

Overall it feels to us that this is not a good time to get involved in most alternative energy technologies. Any temptation to actually use them are tempred by the lack of clarity, complexity, limited availability and prohibitive costs of such solutions.

We will be looking into technologies which are simple, affordable, well established and relatively predictable such as photovoltaic and hydro-electric solutions.

We will be re-examining every aspect of our lifestyle to see where we can consume less and make the best of what we do consume.

We will be trying to create simple and feasible solutions using tried and true solutions, local knowledge and our own common-sense.

Categories
Energy Wind Power

Other Power + Costs

I came across this really useful website on alternative energy. It looks like it’s been gathering dust  and it’s design is somewhat outdated but it’s information seems timeless. Whether you want to go about doing it yourself or to use commercial solutions – their website is a great resource of information – check out Other Power.

Through their website I found two other useful links:

  • One is the US Department of Energy – though the information is presented a USA context – some of it is global and useful. Specifically I found the area on eletrciticy to have useful overview explanations of eletricity generating systems and their components.
  • The other is Bergey – a manufaturer of products and systems. Specifically their Packages pages provides tangible understanding of (a) the potentially high costs of commercial systems and (b) the relative costs of components that are needed to put together an entire working system.

Here is an example of a system that delivers: 400 – 1,500 Kilowatt-hours (kWh’s) per month (depending on wind resource), 24 hours to over a week of back-up power (depending on load and wind).

7.5 kW BWC Excel-R/48 w/VCS-10 $26,870
100ft. guyded latice tower kit $14,145
Tower wiring kit $1,615
DC Power Center, 9 circuit $850
84 kWh, 5 String, Battery Bank $15,000
7.2 kW Inverter system $6,676
Total costs $65,156

The most expensive elements are the turbine itself, the tower and the batteries. The price of the batteries was informative to me because they are needed regardless of how you generate electricity (wind, solar, hydro… ).