To Find Our Place

“One of the most joyous things we can do is to find our place, the land where we belong. Having found our place, we snuggle into it, learn about it, adapt to it, and accept it fully. We love and honor it. We rejoice in it. We cherish it. We become native to the land of our living.”

Carol Deppe

The Second First Rocket Stove

It was on my mind for many months … rebuilding the first rocket stove. It worked good – though not great. There were some design errors and compromises and during the last winter there were more smokeback events that I could not explain. I wasn’t keen on taking apart something that (kinda) worked and embarking on another build project. So I played around with it in my mind for a long time. Eventually I had a design I felt comfortable pursuing, I did a simple cob test to confirm the materials I had … counted and purchased bricks … and decided to go for it.

At the last minute I decided to give it a chance to become a workshop build and so I published an invitation and sent out word to people I knew and thought may know other people who would be interested … this was 3 or 4 days before the planned weekend build … and once person did sign up … making him the first participant in the first workshop I have ever offered at Bhudeva. I had two pairs of helping hands – Annelieke and Horatiu.

The project was born when I did created this layout:

P1060969

I was able to take real measurements, finalize brick counts … and get confident enough about my vision to move forward. The first thing we had to do was to take apart the existing stove … which was magical … the knowledge that most of the materials can be reused … that the rest are non-toxic and can simply be tossed out anywhere on the land where they will be reassimilated by nature … its one thing to know this and another to experience it:

P1060970

P1060973

P1060971

I was surprised to find the metal heat riser mostly in tact … though it was dry and chipping. Most of the clay-perlite insulation was used in thew new build …  which … began by recreating the layout in place to find the exact position it would be in relation to the existing chimney.

P1060975

P1060977

P1060979

With the position fixed we were able to get to work on building a raised floor:

P1060980

And then, layer by layer, building up the core of the stove:

P1060982

P1060987

P1060992

… and when we brought in the barrel for a first fitting it started to feel like it just might become a real life rocket stove:

P1060989

In the following image you can see the experimental part of this build. I discovered these honeycomb bricks and decided to use them to easily create heat channels and storage mass. There are two air passages (barely visible in the image) that allow the hot gasses to flow from the barrel into the two-brick chamber on the left hand side of the image – where they flow up. Then (as can be seen in later images) there is a top chamber that allows the gasses to flow across and down the two-brick chamber at the top of the image (right up against the wall) – where they flow down and then out through the chimney. There were three experiment going on: 1) using honeycomb bricks; 2) introducing a vertical flow both with both bottom-up and then top-down flows; 3) and gaining improved heat storage by having mass outside (the shell of the bricks) and inside (the honeycomb pattern).

P1060998

This is as far as we got in the two days of work we had available. Horatiu and I agreed that he would come back for another day of work during which we will complete the build and fire it up for the first time. So during the next few days Annelieke and I continued doing some preparatory tasks. The most prominent task was the heat riser. Annelieke started doing a perfect and wrong job. Can you guess what is wrong in this image:

P1070004

Annelieke is doing fantastic work getting the bricks aligned and leveled … but she is laying them without overlaps … creating a beautifully symmetric and unstable structure. This is something I take so much for granted that I did not spot until a few more layers were built and it became very prominent. So It had to be taken down and rebuilt properly:

P1070006

While she did that I built some insulation chambers around the core (to extend the insulation that would be placed around the heat riser) and started filling them with the clay-perlite mix from the old core … and as you can see in the bottom-left corner I started playing around with cob … hoping for a better experience (I’ve had very poor experiences in the past):

P1070007

On the day Horatiu came back we finished building up the honeycomb brick chambers and the top chamber in which gasses could pass from the up-flow chamber to the down-flow chamber:

P1070014

P1070012

The top chamber was closed with bricks and we then added on the sheet-metal container for the insulation:

P1070015

… filled it up with clay-perlite insulation:

P1070018

P1070020

… and sealed it:

P1070021

… and suddenly that was it … everything was ready for a barrel:

P1070025

… and lighting a fire … the smoothest lighting of a new rocket stove I’ve ever experienced … excellent draft (probably helped by the fact that the core had a few good days to dry):

P1070026

I was then left on my own to slowly transport cob-worthy material, to mix it up in reasonable one-person batches … and slowly build it and transform the stove from something very mechanical and engineered to something organic and mysterious:

P1070027

P1070028

P1070036

There were a few places where seeds apparently got into the cob mix … and given that there was a lot of moisture inside this happened, in a few places:

P1070039

It now, though still slowly drying, looks like this:

P1070053

The second lighting of the stove, in contrast to the first, went very poorly. I am guessing it had to do with the loads of cool moist cob. This is where the experimental part may have also kicked in … the gasses may have had a hard time establishing a complete and continuous flow throughout the stove, resulting in serious backsmoke. During the third lighting I was careful to preheat at both cleanouts, to start very gradually and only when the stove was flowing well to put in a full load … and … to my great relief … it ran perfectly again. The fourth lighting was not so good … I wasn’t as patient. Since then I’ve lit it a few more times and it has been going fine.

I estimate that, aside from the bricks, I put on over half a ton (maybe up to three quarters) of cob. Thats a lot of moisture. At the end of the first lighting (before cob went on) when the full load finished burning the bricks at the back were noticeable warm. Not so during the next few lightings. There are many liters of water in there that need to dry. This is something that should be taken into consideration in a construction schedule. I started the construction early so there would be time to experiment and make corrections. I did not take into considerations how long this would take to dry … it still is drying.

Cob was much more friendly this time … finally. I played around with different finishing techniques … I still am. It is a subtle thing finishing and there seem to be numerous paths to go about it. It is very pleasant work (when it works) to be able to mold shapes, smooth corners, add colors. It felt like a complementary and balancing process to the more structured, measured, aligned process of building the core. It felt free, open, secure,  … embracing and welcoming. It is a pleasant way to finish a build and a much more pleasant result :)

The stove has already worked for a few cold nights. It’s still hard to say how good it works because: its not that cold yet, there is still humidity in the mass, the barrel itself is partly wrapped in cob … so a few things still shifting and changing. I am looking forward to experiencing how it works … both the immediate heating and the heat storage for the night. I have a feeling that it is going to be more efficient in terms of wood consumption (then its predecessor) … I am curious how it will compare in terms of heat storage (the previous stove was all storage, slow to heat up but then radiated plenty of warmth throughout the night – sometimes even overheating the room).

Last Minute Rocket Stove Workshop

I’ve started preparations for replacing our first rocket stove with a newer, better built, better functioning rocket stove.

I am planning the new build for this coming weekend and have decided to offer this build as a mini-workshop on rocket stoves.

We will be building a rocket stove with a small mass attached to it (not a full bench as in the complete rocket mass heater design). It will be an opportunity to learn what were the limitations of the previous design (and why they were introduced in the first place) and the considerations that went into the new design. We will be building a typical rocket core with an attached brick chamber with some cob to add more mass and bring it altogether. It is a tight design that will fill a tight space.

You will have an opportunity to:

  • Learn about rocket stove design.
  • Participate in all stages of construction.
  • Meet the materials and the tools involved.
  • Spend some time at and learn about Bhudeva

All within the settings and limitations of a traditional Romanian village house.

The build/workshop will take place on August 23-34 (Saturday & Sunday). There are 5 places for participants. Sleeping will be in tents (there is plenty of space). We will be doing everything together: working, cooking, cleaning. The price of the workshop is 450 Ron.

If you are interested, please fill out this form:

Your Name (required)

Your Email (required)

Your Telephone (required)

Seaweed House

source

Ildi and Levente Embracing Spring 2014

Before I get to the body of this post I’d like to say this. The reason you get to see more images from Ildi & Levente then from other producers is because we are neighbor. We would be happy to post more images from other produers and that is where you may come into the picture. If you enjoy photography and maybe even a member of one of our boxes and want to get a closer look at where your food comes from and want to share those images with others then please do visit with one of our producers, snap some images and send them to us … we will happily publish them.

I think that this year’s centerpiece is Levente’s improvised heating system. Initially he welded together an old stove box and boiler to heat water which is circulated through pipes which heat everything from plants to young-chicks:

P1060673

P1060680

P1060668

P1060670

Then due to frosty nights he added a hot air blower made up of all used parts: an old pump engine, a propeller from a broken down car and a radiator he found in a scrap metal shop in Cluj and a timer that switches it on and off (I think in half our intervals) so that the engine doesn’t overload.

P1060678

P1060679

The heated greenhouse is already home to numerous generations of plants, some of which will be transplanted into other greenhouses where they will grow and mature still protected from potentially cold weather, significantly extending the growing season.

P1060676

P1060677

One greenhouse is already filled with green – with plenty of spinach and soon radishes.

P1060667

In addition to the chicks pictured above there are two mother hens busy taking care of just hatched chicks:

P1060684

P1060683

And continuing Levente’s metal-working season he has constructed an improvised power onion planter – which should transform a two week task into a two day task.

P1060685

P1060691

P1060687

P1060690

P1060688

This winter there was a substantial group of members who continued to enjoy deliveries from Ildi and Levente (and other producer-families) throughout the winter. Now with a growing season starting earlier, the “production year” has expanded amazingly … from about 5 months in the first year to 9 or 10 months. Wonderful evolution.

Kickstarter: The Art and Science of Natural Plaster

2012 was the year of Money & Life, 2013 was the year of Rocket Stoves (with followup review) and it seems that 2014 is going to be about natural finishes.

We’ve played around a bit with natural finishes and we expect to do so much more in the future. We do have a good book on the subject but when this kickstarter appeared I knew I wanted in on it. For me, without access to hands on workshops, something like this is the next best alternative:

It had a good burst of interest in its first days but has slowed down and I really want to see this, so please spread the word :)

Sepp Holzer Creates a Spring Beneath Terraces

Sepp Holzer’s ingenuity at work. In constructing terraces he comes across a hardpan layer of clay. He lays about 100 of slitted pipes that drain naturally with the contour of the hardpan and those pipes collect into a cistern which is used to create head pressure for a house downhill from it. The terraces are forested, quality, naturally mulched and fertilized soil is built, that soil retains lots of moisture, moisture stops draining at the hardpan, meets the slitted pipes and becomes a spring … now flowing at 5 liters per minute all year long (regardless of climate):

terracespring

via zach @ Permies

 

Village Video DVD: How to Build Rocket Mass Heaters with Ernie and Erica

When I started playing with rocket stoves the main resource available was the Rocket Stove book. Though I still consider it a must read for anyone heading into Rocket Stove territory, I do not consider it sufficient. It left me with many questions, it has some outdated information and some things that, knowing what I know now, are borderline wrong. Fortunately there is now an additional resource that complements it wonderfully.

Earlier this year we participated in two kickstarter documentation projects on Rocket Stoves. I’ll speak shortly about one and at more length about the other. The shortly: the Paul Wheaton 4 DVD pack is a nice to have thing. It was a huge success on kickstarter which made its production value all the more disappointing. It includes 4 DVD’s none of which felt complete and comprehensive (the Fire Science came close). It has low quality video and audio. It was nice to have a glimpse into a workshop with Erica and Ernie which I do not have access to … but it was an opportunistic production. With the funds it raised I felt there was an opportunity to create something much better … an opportunity that was missed. This kickstarter project felt incomplete and … well … icky.

Which brings me to the second production How to Build Rocket Mass Heaters with Ernie and Erica by Calen Kennett of Village Video. This was the first of the Kickstarter projects to launch and though it got fully funded it did not create the buzz that the second project got. It was delivered late (I just received mine a couple of days ago) but that was because loads of caring production work went into it.

It documents an entire build of one Rocket Mass Heater (the one you see on the cover) – an 8 inch system built over an existing wooden floor. It covers very many details which appeared as questions during my two builds and I have not seen addressed anywhere else, covering tools, materials, design, build and finishing. It has excellent quality video and audio. It is a composite of footage shot on site during the build together with a separetely shot and well thought out interview with Erica and Ernie (with excellent quality audio). Inside the DVD case there is a printed page with a list of tools and materials used in the build … superb attention to detail.

The kickstarter edition included Erica and Ernie’s recently published The Art of Fire (which I have yet to take in). In addition there was a surprise on the Kickstarter DVD – the detailed plans for the RMH in the DVD (which more than makes up for one thing that I believe is not emphasized enough in the DVD – an explanation of the basic structure of feed tube, burn channel and heat riser and their dimensions). It is a production infused with care and quality.

If you want to get started with Rocket Mass Heaters I would recomment the (above mentioned) book and this DVD.

Apologies to the Salad Gods

Some weeks ago I made a comment on how salad season is coming to an end … it was prompted by the sudden disappearance of peppers and tomatoes.

Well since then I’ve been eating amazing fall salads. Spinach, salad leaves (when I can get them), chopped cabbage (red and white), grated carrots, radishes (when I can get them), onions make a splendid salad. Actually a salad I prefer over the summer salads – during summer I prefer to eat vegetables fresh cut into bit sized chunks … not salads. I’ve been eating lots of it … like an unplanned and oh so welcome wave of vital nourishment before the real cold winter sets in.

fallsalad

To further anchor the experience of abundance I find that no matter how hard I try I can never make a salad small enough for one person. So I usually end up with a “day salad” … that is a salad that I revisit twice or three times a day.

So, my apologies to the salad gods for an early dismissal and my thanks for these amazing fall salads.

How Burning Works

There’s an interesting group called All Power Labs who research biomass gasifiers: in lay terms they make machines that can convert hay, wood chips, nutshells (a large variety of biomass substances) into clean gas products which can be used to power other things – such as a diesel engine generator (which they do). You can see this system at work here:


They got my attention because if/when we go off-the-grid we will likely need a backup source of energy in winter months – the simplest being a diesel generator. But that requires diesel. So the potential of a generator that can run on biomass of which we have plenty is pretty exciting and fills another gap in the sustainability puzzel.

Their CEO Jim Mason appears in a series of 3 videos (~2.5 hours) which finally provided me with an explanation on how burning works. I admit that parts of it were a bit beyond me but for the most part I was able to follow it and learn what actually happens when I burn wood for heat  (namely 4 processes: drying, pyrolysis, gasification, combustion).







It refined my understanding and appreciation of what goes on inside Rocket Stoves. Most  stoves or fireplaces are only able to burn ~20% of the potential energy in wood, most of the rest is released as gasses which for the most part escapes out the chimney unburned. A lose-lose situation: losing potential energy and releasing pollutans into the atmosphere. A typical rocket stoves will burn most (if not all) of those gasses – already making it 4 to 5 times more efficient then most wood burning stoves. Then, after a clean and efficient burn the heat that is generated is retained in a thermal mass … which easily brings them to 10 times better.

via Matt

From Earthship to Earthbags

This is a long overdue post and several external movement have prompted me to finally write it.

A while back I wrote how we moved from hemp construction to Earthships. Well the movement continues and we have moved away from Earthships too. This happened gradually and for numerous reasons:

  1. Expansive Clay Soils – we are proud owners of lots of clay-rich soil which expand when wet and contracts when dry. As I was doing research into Earthships specifically and underground houses generally this seemed to be a problem. Expanding clay soil can place tons of pressure on the walls of a house which can cause it to collapse. So for some time I lived with the question is it possible to build an Earthship in expansive clay soils? My conclusion was that the problems was not the clay soil but moisture.
  2. P.A.H.S – As I did more research I started to come across evidence hinting that Earthships do not work well in our climate (moist and cold). Just recently I came across clear evidence of this. I continued my research and was blown away by an old book called Passive Annual Heat Storage. The book introduced a method by which an underground house is insulated with the soil around it, transforming the surrounding soil into a huge heat battery that charges itself during the warm months of the year and discharges during the cold months. The book confirmed my suspicion that the problem with clay soils is indeed moisture and not clay. The “insulation umbrella” concept described in the book (together with other moisture related strategies) provides a solution to keep the clay soils surrounding the house dry – providing a resounding (even if for now theoretical) answer: yes, underground houses can be built in expansive clay soils by keeping moisture away and in doing so neutralizing the “expansive” quality.
  3. Tires in Romania – we could not find a feasible way to get used tires in Romania.

Empowered by the P.A.H.S knowledge I continued my exploration and started looking into earthbags (it’s a terribly designed and uninviting website but has valuable information). I loved the simplicity and ease-of-construction when compared to ramming tires with earth. I would not have considered it a feasible method of underground construction had it not been for the P.A.H.S. method. I do now.

… and so this is the house that we plan to build.

Of Earth Inside the Earth

The house will be completely buried in the ground except for the south-facing aspect. It’s intended location is on gentle south-facing slope. We will excavate for it into the slope.

Most of its walls will be load-bearing earthbag walls. Hopefully our clay-rich soil (that will be excavated to make space for the house) will provide most of the material needed for the earth-mix that will go into the bags. There is no material more local than earth.

The floor will be an earthen floor and the walls will be covered with earthen finishes.

The roof is an as yet unresolved challenge. It too will be covered with earth and will therefore need to carry a very heavy load (current estimation 1.2 tons per square meter). This weight will probably be supported by round timbers though this is not yet final.

Spacious

We are planning a house that will be ~200sqm. It is designed to spaciously accommodate a small family. It will have a main part and a smaller, attached living space for additional privacy.

P.A.H.S. – 21 Degrees Celsius All Year Long

Thanks to the P.A.H.S. insulation umbrella the house will (after 2 or 3 years of acclimatization) eventually settle on a steady all year-long temperature of 21c. During the warm/hot months excess heat will be stored in the huge earthen thermal battery. During the cold months heat will be drawn from the thermal batter.

This means that we will not need any additional energy input to keep the house warm. Even the water supply that runs under the insulation umbrella arrives at the house at 21c which means that less energy is needed to heat water.

The temperature of the house is a function of how much heat gets into the house (which depends on how much windows it has) and how much it can store (depends on numerous design factors). It is nearly impossible to change the temperature of the house after has been established. Any attempt to heat it will be futile because the energy will be drawn into the thermal battery surrounding it and you would need to invest a huge amount of energy to change that.

Imagine not having to cut down a single tree for heating!?

Rocket Stoves

We do expect to have at least one rocket stove for comfort … to boost the temperature to 23 -24 degrees when we want to … and to heat water during the months when solar-heated hot water is not available.

 Ventillation

ventilation is, we’ve come to believe, an important and often missed aspect. The air in the house should be regularly exchanged. Fortunately the P.A.H.S. strategy includes a passive ventilation system (no fans and no electricity to run it) that brings fresh air into the house all year-long at, you guessed it, 21c. The ventilation system also plays a key role in storing excess heat when it is generated (summer) and retrieving it when it is needed (winter).

The trick (and the one challenge that still worries me) is to build the house air-tight. You should not need to open/close windows in this house ever. During the summer months the passive ventilation system will draw hot air out and store the heat in the thermal battery (instead of letting it escape out windows). During the winter months the passive ventilation system will draw air in from the outside, running it through the thermal battery and bring it up to room temperature.

Imagine fresh air during winter at room temperature (and stale air removed) without losing heat to the cold outside!?

Passive Refrigeration

Michael Reynolds in his classic Earthship books points how ridiculous refrigeration can be: we build boxes to keep the cold out, spend energy to get those boxes warm then build smaller boxes inside and spend more energy to keep those boxes cool.

With a slight change in configuration, the same passive ventilation method that is used to regulate the temperature of the house can be used to create a cool space (let cold air in and warm air out). In the Romanian winter that cool is cold enough not just to refrigerate but also to freeze.

Our intention is to build an insulated (from the warmth of the house) space within the house that will harvest winter coolth. That coolth will be stored in water bottles that will freeze. The space will be divided in two. One part will hold a freezer that will be exposed to the natural freezing temperatures. A second part will hold a refrigerator. Both will be unplugged during the winter months. When spring sets on and the ice melts and there isn’t enough coolth they will be plugged back in and run on electricity (which is once again available as the days get longer and the sun shines through).

Photovoltaic Electricity

We would like to be able to live off-the-electric-grid. The first step towards doing that is by drastically reducing consumption:

  1. The house is naturally heated so that no electricity is needed for heating.
  2. Hot water is pre-heated due to the thermal battery, then heated with an efficient rocket stove during winter and with a solar-hot-water panel in spring/summer. Very little electricity needed for pre-heating small quantities of water.
  3. Refrigeration is designed to work on the naturally available coolth of winter when there is very little sunshine to produce electricity.
  4. Large south-facing windows and a one-room-depth house design provides plenty of natural light all year-long.

This leaves us with some lighting and other smaller electronic devices (computers and such). This should enable a photo-voltaic system that will provide all our needs in summer months and most of our needs in winter months.

Attached Greenhouse

The front of the house will be a large greenhouse that will serve multiple functions:

  1. Harvesting heat during winter months.
  2. Extend the growing season.
  3. Growing plants that can not tolerate the harsh winter (lemons? avocados? even bananas?)
  4. Having a pleasant green space to spend time in during the cold winter months.
  5. Consuming grey-water created in the house (this is much easier for us since we use composting toilets and do not have to deal with black-water).
  6. A transition space between the outside and inside (keeping the inside cleaner).

Rainwater Harvesting

For a long time we were faced with a dilemma:

  1. A standard roof that will harvest rainwater for the house but somewhat compromise insulation (all heat inside the house rises) and durability (all mechanical roofs are prone to deterioration and require maintenance).
  2. A living roof that will provide superior insulation and durability but is practically useless for harvesting rainwater (10-15% of a similarly sized regular roof).

After long deliberation we came up with a solution that will provide us the best of both worlds. The house will be built with a living roof (a relatively massive one) that will complete the insulation umbrella.

We will be building a “mirror” structure of the house slightly uphill. This will be a simpler and cheaper structure. It will include a workshop, storage spaces and an open yet sheltered work space for a summer kitchen and other outdoor activities (some of these functions are now unmet or just temporarily resolved). This second structure will have a metal roof for harvesting rainwater that will be stored in an underground cistern that will supply the main house.

Summary

None of these technologies are new. All have been implemented in one way or another. We do not yet know of a house that has been built using all these technologies combined in a climate like ours. It has taken almost 3 years of research by trial and error to reach this formula which has the potential to be an affordable, ecological, sustainable and scalable method of construction.

Scalable is an important quality worth explaining. From what we’ve seen most eco-houses fall into one of two groups. One are small hobbit-hole-like homes which are often the result of do-it-yourself builds with natural materials (these do not scale up very well). The other are large and expensive homes that rely on expensive and complicated technologies to achieve an illusion of sustainability (that often ignores their embodied energy and their technological dependence). We are trying to create something that is in between these two worlds. The P.A.H.S. method can be applied to any size home and it is a core component in the overall efficiency of such a house.

This will hopefully be a very-long-term house.